Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(4): 1316-1323, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227973

RESUMO

Color centers (CCs) in nanostructured diamond are promising for optically linked quantum technologies. Scaling to useful applications motivates architectures meeting the following criteria: C1 individual optical addressing of spin qubits; C2 frequency tuning of spin-dependent optical transitions; C3 coherent spin control; C4 active photon routing; C5 scalable manufacturability; and C6 low on-chip power dissipation for cryogenic operations. Here, we introduce an architecture that simultaneously achieves C1-C6. We realize piezoelectric strain control of diamond waveguide-coupled tin vacancy centers with ultralow power dissipation necessary. The DC response of our device allows emitter transition tuning by over 20 GHz, combined with low-power AC control. We show acoustic spin resonance of integrated tin vacancy spins and estimate single-phonon coupling rates over 1 kHz in the resolved sideband regime. Combined with high-speed optical routing, our work opens a path to scalable single-qubit control with optically mediated entangling gates.

2.
Nat Commun ; 14(1): 704, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759601

RESUMO

The large scale control over thousands of quantum emitters desired by quantum network technology is limited by the power consumption and cross-talk inherent in current microwave techniques. Here we propose a quantum repeater architecture based on densely-packed diamond color centers (CCs) in a programmable electrode array, with quantum gates driven by electric or strain fields. This 'field programmable spin array' (FPSA) enables high-speed spin control of individual CCs with low cross-talk and power dissipation. Integrated in a slow-light waveguide for efficient optical coupling, the FPSA serves as a quantum interface for optically-mediated entanglement. We evaluate the performance of the FPSA architecture in comparison to a routing-tree design and show an increased entanglement generation rate scaling into the thousand-qubit regime. Our results enable high fidelity control of dense quantum emitter arrays for scalable networking.

3.
Phys Rev Lett ; 129(17): 173603, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332262

RESUMO

Tin-vacancy centers in diamond are promising spin-photon interfaces owing to their high quantum efficiency, large Debye-Waller factor, and compatibility with photonic nanostructuring. Benchmarking their single-photon indistinguishability is a key challenge for future applications. Here, we report the generation of single photons with 99.7_{-2.5}^{+0.3}% purity and 63(9)% indistinguishability from a resonantly excited tin-vacancy center in a single-mode waveguide. We obtain quantum control of the optical transition with 1.71(1)-ns-long π pulses of 77.1(8)% fidelity and show it is spectrally stable over 100 ms. A modest Purcell enhancement factor of 12 would enhance the indistinguishability to 95%.

4.
Phys Rev Lett ; 127(14): 147402, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652204

RESUMO

Quantum emitters in diamond are leading optically accessible solid-state qubits. Among these, Group IV-vacancy defect centers have attracted great interest as coherent and stable optical interfaces to long-lived spin states. Theory indicates that their inversion symmetry provides first-order insensitivity to stray electric fields, a common limitation for optical coherence in any host material. Here we experimentally quantify this electric field dependence via an external electric field applied to individual tin-vacancy (SnV) centers in diamond. These measurements reveal that the permanent electric dipole moment and polarizability are at least 4 orders of magnitude smaller than for the diamond nitrogen vacancy (NV) centers, representing the first direct measurement of the inversion symmetry protection of a Group IV defect in diamond. Moreover, we show that by modulating the electric-field-induced dipole we can use the SnV as a nanoscale probe of local electric field noise, and we employ this technique to highlight the effect of spectral diffusion on the SnV.

5.
Nature ; 583(7815): 226-231, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32641812

RESUMO

A central challenge in developing quantum computers and long-range quantum networks is the distribution of entanglement across many individually controllable qubits1. Colour centres in diamond have emerged as leading solid-state 'artificial atom' qubits2,3 because they enable on-demand remote entanglement4, coherent control of over ten ancillae qubits with minute-long coherence times5 and memory-enhanced quantum communication6. A critical next step is to integrate large numbers of artificial atoms with photonic architectures to enable large-scale quantum information processing systems. So far, these efforts have been stymied by qubit inhomogeneities, low device yield and complex device requirements. Here we introduce a process for the high-yield heterogeneous integration of 'quantum microchiplets'-diamond waveguide arrays containing highly coherent colour centres-on a photonic integrated circuit (PIC). We use this process to realize a 128-channel, defect-free array of germanium-vacancy and silicon-vacancy colour centres in an aluminium nitride PIC. Photoluminescence spectroscopy reveals long-term, stable and narrow average optical linewidths of 54 megahertz (146 megahertz) for germanium-vacancy (silicon-vacancy) emitters, close to the lifetime-limited linewidth of 32 megahertz (93 megahertz). We show that inhomogeneities of individual colour centre optical transitions can be compensated in situ by integrated tuning over 50 gigahertz without linewidth degradation. The ability to assemble large numbers of nearly indistinguishable and tunable artificial atoms into phase-stable PICs marks a key step towards multiplexed quantum repeaters7,8 and general-purpose quantum processors9-12.

6.
ACS Appl Mater Interfaces ; 12(23): 26525-26533, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32321237

RESUMO

The simultaneous imaging of magnetic fields and temperature (MT) is important in a range of applications, including studies of carrier transport and semiconductor device characterization. Techniques exist for separately measuring temperature (e.g., infrared (IR) microscopy, micro-Raman spectroscopy, and thermo-reflectance microscopy) and magnetic fields (e.g., scanning probe magnetic force microscopy and superconducting quantum interference devices). However, these techniques cannot measure magnetic fields and temperature simultaneously. Here, we use the exceptional temperature and magnetic field sensitivity of nitrogen vacancy (NV) spins in conformally coated nanodiamonds to realize simultaneous wide-field MT imaging at the device level. Our "quantum conformally attached thermo-magnetic" (Q-CAT) imaging enables (i) wide-field, high-frame rate imaging (100-1000 Hz); (ii) high sensitivity; and (iii) compatibility with standard microscopes. We apply this technique to study the industrially important problem of characterizing multifinger gallium nitride high-electron mobility transistors (GaN HEMTs). We spatially and temporally resolve the electric current distribution and resulting temperature rise, elucidating functional device behavior at the microscopic level. The general applicability of Q-CAT imaging serves as an important tool for understanding complex MT phenomena in material science, device physics, and related fields.

7.
Phys Rev Lett ; 124(2): 023602, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004012

RESUMO

Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T_{1}>10 ms, and the coherence time, T_{2}^{*} reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.

8.
Nat Commun ; 11(1): 360, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937770

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Nat Commun ; 10(1): 5625, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819050

RESUMO

Diamond photonics is an ever-growing field of research driven by the prospects of harnessing diamond and its colour centres as suitable hardware for solid-state quantum applications. The last two decades have seen the field shaped by the nitrogen-vacancy (NV) centre with both breakthrough fundamental physics demonstrations and practical realizations. Recently however, an entire suite of other diamond defects has emerged-group IV colour centres-namely the Si-, Ge-, Sn- and Pb-vacancies. In this perspective, we highlight the leading techniques for engineering and characterizing these diamond defects, discuss the current state-of-the-art group IV-based devices and provide an outlook of the future directions the field is taking towards the realisation of solid-state quantum photonics with diamond.

10.
Opt Express ; 26(3): 3341-3352, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401863

RESUMO

A central challenge in quantum technologies based on atom-like defects is the efficient collection of the emitter's fluorescence. Optical antennas are appealing as they offer directional emission together with spontaneous emission rate enhancement across a broad emitter spectrum. In this work, we introduce and optimize metal-dielectric nanoantenna designs recessed into a diamond substrate and aligned with quantum emitters. We analyze tradeoffs between external quantum efficiency, collection efficiency, radiative Purcell factor, and overall collected photon rate. This analysis shows that an optimized metal-dielectric hybrid structure can increase the collected photon rate from a nitrogen vacancy center by over two orders of magnitude compared to a bare emitter.

11.
Nat Commun ; 8: 15376, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28548097

RESUMO

The controlled creation of defect centre-nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.

12.
Nano Lett ; 15(3): 1751-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25621759

RESUMO

A central challenge in developing magnetically coupled quantum registers in diamond is the fabrication of nitrogen vacancy (NV) centers with localization below ∼20 nm to enable fast dipolar interaction compared to the NV decoherence rate. Here, we demonstrate the targeted, high throughput formation of NV centers using masks with a thickness of 270 nm and feature sizes down to ∼1 nm. Super-resolution imaging resolves NVs with a full-width maximum distribution of 26 ± 7 nm and a distribution of NV-NV separations of 16 ± 5 nm.

13.
Nat Commun ; 6: 6173, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25629223

RESUMO

A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy-nanocavity systems in the strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interface is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.

14.
J Phys Chem C Nanomater Interfaces ; 118(46): 26695-26702, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25436035

RESUMO

We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

15.
Nano Lett ; 14(5): 2471-8, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24754755

RESUMO

Optical pumping of spin polarization can produce almost complete spin order but its application is restricted to select atomic gases and condensed matter systems. Here, we theoretically investigate a novel route to nuclear spin hyperpolarization in arbitrary fluids in which target molecules are exposed to polarized paramagnetic centers located near the surface of a host material. We find that adsorbed nuclear spins relax to positive or negative polarization depending on the average paramagnetic center depth and nanoscale surface topology. For the particular case of optically pumped nitrogen-vacancy centers in diamond, we calculate strong nuclear spin polarization at moderate magnetic fields provided the crystal surface is engineered with surface roughness in the few-nanometer range. The equilibrium nuclear spin temperature depends only weakly on the correlation time describing the molecular adsorption dynamics and is robust in the presence of other, unpolarized paramagnetic centers. These features could be exploited to polarize flowing liquids or gases, as we illustrate numerically for the model case of a fluid brought in contact with an optically pumped diamond nanostructure.

16.
Nano Lett ; 14(1): 32-6, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24199716

RESUMO

The combination of long spin coherence time and nanoscale size has made nitrogen vacancy (NV) centers in nanodiamonds the subject of much interest for quantum information and sensing applications. However, currently available high-pressure high-temperature (HPHT) nanodiamonds have a high concentration of paramagnetic impurities that limit their spin coherence time to the order of microseconds, less than 1% of that observed in bulk diamond. In this work, we use a porous metal mask and a reactive ion etching process to fabricate nanocrystals from high-purity chemical vapor deposition (CVD) diamond. We show that NV centers in these CVD nanodiamonds exhibit record-long spin coherence times in excess of 200 µs, enabling magnetic field sensitivities of 290 nT Hz(-1/2) with the spatial resolution characteristic of a 50 nm diameter probe.

17.
Appl Phys Lett ; 103(18): 181119, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24273329

RESUMO

We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS2) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping shows strong variations of emission when the MoS2 monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS2 emission show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which indicates an underlying cavity mode Purcell enhancement of the MoS2 SE rate exceeding a factor of 70.

18.
Nano Lett ; 13(5): 2073-7, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23547791

RESUMO

Recent advances in fluorescence microscopy have enabled spatial resolution below the diffraction limit by localizing multiple temporally or spectrally distinguishable fluorophores. Here, we introduce a super-resolution technique that deterministically controls the brightness of uniquely addressable, photostable emitters. We modulate the fluorescence brightness of negatively charged nitrogen-vacancy (NV(-)) centers in nanodiamonds through magnetic resonance techniques. Using a CCD camera, this "deterministic emitter switch microscopy" (DESM) technique enables super-resolution imaging with localization down to 12 nm across a 35 × 35 µm(2) area. DESM is particularly well suited for biological applications such as multispectral particle tracking since fluorescent nanodiamonds are not only cytocompatible but also nonbleaching and bright. We observe fluorescence count rates exceeding 1.5 × 10(6) photons per second from single NV(-) centers at saturation. When combined with emerging NV(-)-based techniques for sensing magnetic and electric fields, DESM opens the door to rapid, super-resolution imaging for tracking and sensing applications in the life and physical sciences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...